Схема подключения чиллера

Такого многообразия схем подключения, как у  чиллеров, не имеет ни одна система кондиционирования  воздуха. Это объясняется тем, что охлаждение с помощью чиллера, пожалуй, является одним из самых старейших и распространенных способов, который применяется не только в кондиционировании воздуха, но и в сегменте среднего и низкого холода.

В состав чиллера входит холодильная машина со всеми основными элементами: компрессор, конденсатор, дросселирующее устройство и испаритель. В зависимости от холодопроизводительности и типа, чиллер может комплектоваться различными дополнительными вспомогательными элементами. Другим основным элементом чиллера является гидромодуль. Именно он обеспечивает циркуляцию  холодной/нагретой  жидкости через фанкойлы или какие-либо другие устройства. Также, в зависимости от требований пользователя, гидромодуль может иметь дополнительные элементы. Обязательно в нем должны быть: расширительный бак, циркуляционный насос, сетчатый фильтр, виброгасители и запорная, регулирующая арматура. К ней относятся запорные, соленоидные вентили, воздушные, предохранительные клапаны – т.е. элементы, отвечающие за эффективность и безопасность работы гидромодуля.    В случае недостаточного объема жидкости в гидравлическом контуре, необходимо применение аккумулирующего бака, который может быть встроен в гидромодуль.

Схема с конденсатором воздушного охлаждения с осевым вентилятором

Самый распространенный и продаваемый тип холодильных машин для охлаждения жидкости - это моноблочные чиллеры с конденсатором воздушного охлаждения с осевым вентилятором, и  в качестве холодо/теплоносителя  используется вода. Расположение чиллера обязательно должно быть на открытом воздухе - крыша зданий или место рядом со зданием на земле. При этом чиллер с гидромодулем могут быть расположены либо в разных корпусах, либо в одном корпусе. Такая схема подключения чиллера успешно работает на охлаждение в летний период. Однако на зимний период воду необходимо сливать, а летом вновь заправлять. Именно такая процедура и является главным недостатком данной схемы подключения, так как подобные работы требуют высокой квалификации специалистов и ответственности при проведении работ.  

Схема 1
    

Схема с воздушным конденсатором

Если есть необходимость работы чиллера зимой на тепло, а летом на холод и в гидравлическом контуре должна циркулировать вода, то возможна схема подключения чиллера с воздушным конденсатором. Конденсатор же должен быть выносной, установленный на открытом воздухе. Все остальные части чиллера располагаются в теплом помещении. При такой схеме сохраняются все положительные моменты предыдущей схемы, и устраняется негативный момент, который связан со сливом воды на зиму. Все же недостатки есть. Так как конденсатор выносной, то часть холодильного контура, которая идет от чиллера до конденсатора, имеет ограничения по длине трассы и перепаду высот. 

Схема 2

Схема с конденсатором водяного охлаждения

Более универсальная схема установки чиллера, способная работать и в зимний и летний период время с заправкой водой, - это схема чиллера с конденсатором водяного охлаждения. При такой схеме сам чиллер и гидромодуль располагаются в теплом помещении, и на его работу не влияет температура наружного воздуха. Это очень важный фактор в работе чиллера, так как исключается замерзание воды в гидравлическом контуре, и нет необходимости сливать воду в зимний период. Но для охлаждения воды, которая обеспечивает работу и конденсацию холодильного агента в конденсаторе, необходим дополнительный водяной контур от конденсатора до “сухого охладителя”. Такая схема более сложная, громоздкая и все это увеличивает его стоимость относительно схемы с конденсатором воздушного охлаждения. 

Схема 3

Схема с воздушным конденсатором и центробежным вентилятором

Схема чиллера с воздушным конденсатором и центробежным вентилятором позволяет обойти все ограничения, связанные с  удлинением трубопроводов для холодильного и  гидравлического контуров, с необходимостью слива и т.п.. Установка самого чиллера и гидромодуля возможна в теплом помещении. Но так как конденсатор с воздушным охлаждением, то ему нужен наружный воздух. Воздух приходится подавать на обдув конденсатора по воздуховодам и отводить тоже по воздуховодам. В зимнее же время для поддержания в помещении постоянной температуры воздуха следует обеспечить систему автоматики для регулирования подачи холодного наружного воздуха или его перекрытия. Схема применяется редко, в основном из-за высокой стоимости и сложности подачи наружного воздуха и его регулирования через воздуховоды. 

Схема 4

Схема с промежуточным теплообменником

Как известно, стандартно выпускаемые чиллеры рассчитаны на работу с очень ограниченным диапазоном температур холодо/теплоносителя на входе и выходе теплообменника испарителя. Не всегда такие показатели температур устраивают потребителей. В таком случае используется промежуточный теплообменник, в котором происходит доведение температуры холодо/теплоносителя до заводских стандартных  значений, а уже потом он поступает непосредственно в чиллер. Схема подключения чиллера с промежуточным теплообменником чаще всего применяется в производственных целях, где есть необходимость охладить очень горячую среду до заданных температур. Имеются и недостатки такой схемы. Появляется второй гидравлический контур, дополнительный циркуляционный насос. Чиллеры, работающие по такой схеме, изготавливаются заводом-производителем под заказ, и стоят намного дороже. В основном потребитель сам производит расчеты и подбор промежуточного теплообменника. Часто такие расчеты достаточно приблизительные и могут дать отклонения температурного режима работы самого чиллера, а это, в свою очередь, может привести к появлению различных неисправностей.
Схема 5

Схема параллельного подключения

Холодопроизводительности чиллеров колеблются в больших пределах  - от 16 кВт и до 7000 кВт. Чем больше производительность, тем более сложным и дорогим компрессором комплектуется чиллер. Очень часто подбор оборудования производится таким образом, что требуемая суммарная холодопроизводительность разделяется на несколько частей, что позволяет уменьшить минимальную необходимую нагрузку на каждую холодильную машину, и, таким образом,  в проектах находит применение более сложная схема параллельного подключения чиллеров.  Параллельное подключение применяется также, если есть необходимость обеспечения резервирования или ротации чиллеров. Идеальным вариантом является параллельное подключение чиллеров одинаковой производительности. В случае разной их производительности появляется необходимость сбалансировать работу чиллеров, исходя из требуемых расходов холодо/теплоносителя. Подобная схема сложна тем, что необходимо всегда обеспечивать равномерную подачу холодо/теплоносителя для обоих чиллеров, в случае их одновременной работы, обеспечения автоматического резервирования или ротации.
Схема параллельного подключения